n	M_{n}	Digits	Prime?
2	3	1	Prime.
3	7	1	Prime.
5	31	2	Prime.
7	127	3	Prime.
11	2, 047	4	Not prime. In 1536 Hudalricus Regius showed that 2047 $=23 * 89$.
13	8,191	4	Prime. Proved prime in 1456. Discover not known.
17	131, 071	6	Prime. Cataldi proved prime in 1603 using trial division.
19	524, 287	6	Prime. Cataldi proved prime in 1603 using trial division.
23	8,388, 607	7	Not prime. Cataldi claimed as prime in 1603. Fermat showed was composite in 1640.
29	536, 870, 911	8	Not prime. Cataldi claimed as prime in 1603. Euler showed was composite in 1738.
31	$\begin{aligned} & \hline 2,147,483, \\ & 647 \end{aligned}$	10	Prime. Euler proved prime in 1772.
37	$\begin{aligned} & 137,438,953, \\ & 471 \end{aligned}$	12	Not prime. Fermat showed was composite in 1640.
61	$\begin{aligned} & \hline 2,305,843, \\ & 009,213,693, \\ & 951 \end{aligned}$	19	Prime. Pervushin proved prime in 1883.

Table 3.7: Mersenne Primes M_{n} are prime numbers of the form $2 \times 2 \times 2 \cdots \times 2-1$, where there are n copies of the number 2. Some M_{n} are prime and some are not. Source: Chris Caldwell, The Largest Known Prime by Year [27].

