Year	Mbps	AYG	Months	Comments
		(%)	to	
			Double	
1986	0.056			NSFNET
				started
1988	1.544	425	5	NSFNET back-
				bone upgraded
				to T1
1991	44.736	207	7	NSFNET back-
				bone upgraded
				to T3
1995	155.52	37	27	vBNS started
				with OC-3
				backbone
1997	622.08	100	12	vBNS backbone
				upgraded OC-12
1999	2,500	100	12	vBNS backbone
				upgraded OC-48
2001	10,000	100	12	MREN back-
				bone operates at
				10GE
2006	40,000	32	30	Some limited
				deployment in
				Japan of OC-768

Table 2.6: Data about Gilder's law is a bit harder to get than data about Moore's Law. To quantify the growth in bandwidth over a fifteen year period, this table details the bandwidth of the backbone of some academic research network during the twenty year period 1986–2006. During this period, the average yearly growth (AYG) has been about 143%, while the average time to double has been about 15 months. Note that Gilder's Law is a bit more optimistic.