Item	Period	Units	Comments
Integrated	1970 - present	number of	Moore's
Circuits		transistors per	Law
		chip	
Storage	1956 - present	Gigabytes per	Johnson's
		disk	Law
Bandwidth	1980 - present	Megabits per	Gilder's
		second	Law
Software	1975 - present	Lines Of Code	Stallman's
		(LOC) per	Law
		application or	
		system	
Data	1975 - present	The number	Bermuda
		of rows and	Principles
		columns of	
		data in a data	
		set	

Table 2.2: This table contains some of the key enabling technologies of the digital era that have been commoditized. The commoditization of processing power has been known as Moore's Law since shortly after it was described by Gordon Moore in 1965. There are no standard names for the commoditization of storage, bandwidth and software. In this book, we refer to the commoditization of storage, bandwidth and software as Johnson's Law, Gilder's Law and Stallman's Law, after Reynold B. Johnson, George Gilder and Richard Stallman, respectively. Perhaps the best example of the the commoditization of data is the availability of the entire human genome, which was provided the Human Genome Project and whose data release policy was governed by what are known as the Bermuda Principles.