Year	Number of Transistors	Processor	Average Yearly Growth	Months to Double
1971	2,300	Intel 4004		
1972	3,500	Intel 8008	52%	20
1974	6,000	Intel 8080	31%	31
1978	29,000	Intel 8086	48%	21
1982	134,000	Intel 286	47%	22
1985	275,000	Intel 386	27%	35
1989	$1,200,000$	Intel 486	45%	23
1993	$3,100,000$	Pentium	27%	35
1998	$7,500,000$	Pentium II	19%	47
2000	$28,000,000$	Pentium III	93%	13
2003	$77,000,000$	Pentium IV	40%	25
2006	$291,000,000$	Intel Core 2 Duo	56%	19

Table 2.1: Over a thirty five year period the number of transistors on an integrated circuit has increased from 2,300 to $291,000,000$. This represents geometric growth averaging 44% per year. On average, number of transistors has double every 26 months. For the past several years, Intel has developed several different processors in each product line and the growth rate and doubling period vary a bit depending upon which processors are selected from each product line. Source: The first three columns of data are from the Intel Web site, (www.intel.com). The remaining columns are computed.

