

Figure 1.2: The Greek Parthenon is 69.5 meters longs, 30.88 meters wide and 13.72 meters tall, exactly the same proportions that you get if you take three 3 x 4 rectangles and lay them end to end as indicated. Note that the length of the diagonal of a 3×4 rectangle is 5 .
ements, which captured the geometry of the 4th century B.C. Greeks. This was a tremendous achievement and provided fundamental insights and algorithms for a variety of different problems, both theoretical and practical.

A good example of how the Greeks viewed numbers as geometric lengths and ratios is provided by the Parthenon [115]. The Parthenon is 69.5 meters long, 30.88 meters wide, and 13.72 meters high. This means that the ratio of the width to the length is $30.88 / 69.5$ or about $4 / 9$, while the ratio of the height to the width is $13.72 / 30.88$ or about $4 / 9$. These are the dimensions you would get if you took three rectangles of length 3×4 and placed them side by side, as in the diagram below. Note that the diagonal of a 3×4 rectangle is of length 5 , since by the Pythagorean Theorem $3 \times 3+4 \times 4=5 \times 5$.

Another significant advance in computing which is easy to take for granted is the introduction in the seventeenth century of symbols for unknown quantities, such as the variable x . With these types of symbols, equations such as 2.2 $\mathrm{x}=32.8$ could be easily represented, as could geometric objects such as the circles, ellipses, and hyperbolas.

Just as today's positional number system enables com-

